Verified partial eigenvalue computations using contour integrals for Hermitian generalized eigenproblems
نویسندگان
چکیده
منابع مشابه
Nonlinear eigenvalue problems and contour integrals
Beyn’s algorithm for solving nonlinear eigenvalue problems is given a new interpretation and a variant is designed in which the required information is extracted via the canonical polyadic decomposition of a Hankel tensor. A numerical example shows that the choice of the filter function is very important, particularly with respect to where it is positioned in the complex plane.
متن کاملPerturbation of Partitioned Hermitian Generalized Eigenvalue Problem
We are concerned with the perturbation of a multiple eigenvalue μ of the Hermitian matrix A = diag(μI,A22) when it undergoes an off-diagonal perturbation E whose columns have widely varying magnitudes. When some of E’s columns are much smaller than the others, some copies of μ are much less sensitive than any existing bound suggests. We explain this phenomenon by establishing individual perturb...
متن کاملNearly Optimal Preconditioned Methods for Hermitian Eigenproblems under Limited Memory. Part I: Seeking One Eigenvalue
Large, sparse, Hermitian eigenvalue problems are still some of the most computationally challenging tasks. Despite the need for a robust, nearly optimal preconditioned iterative method that can operate under severe memory limitations, no such method has surfaced as a clear winner. In this research we approach the eigenproblem from the nonlinear perspective that helps us develop two nearly optim...
متن کاملHigh-Performance Solvers for Dense Hermitian Eigenproblems
We introduce a new collection of solvers – subsequently called EleMRRR – for large-scale dense Hermitian eigenproblems. EleMRRR solves various types of problems: generalized, standard, and tridiagonal eigenproblems. Among these, the last is of particular importance as it is a solver on its own right, as well as the computational kernel for the first two; we present a fast and scalable tridiagon...
متن کاملA Contour-integral Based Qz Algorithm for Generalized Eigenvalue Problems
Recently, a kind of eigensolvers based on contour integral were developed for computing the eigenvalues inside a given region in the complex plane. The CIRR method is a classic example among this kind of methods. In this paper, we propose a contour-integral based QZ method which is also devoted to computing partial spectrum of generalized eigenvalue problems. Our new method takes advantage of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2020
ISSN: 0377-0427
DOI: 10.1016/j.cam.2019.112543